魏福村 Fu-Tsun Wei

傑出研究獎

國立清華大學
數學系暨研究所教授

學歷

  • 國立清華大學數學系博士(2010)
  • 國立清華大學數學系碩士(2005)
  • 國立臺灣師範大學數學系學士(2003)

經歷

  • 國立清華大學數學系教授(2021/8~迄今)
  • 國立清華大學數學系副教授(2018/8~2021/7)
  • 國立中央大學數學系助理教授(2016/8~2018/7)
個人勵志銘
1.01的n次方會趨近於無限大,而0.99的n次方則會趨近於0。 這便是多努力1%與少努力1%的區別。

建立正特徵值的Kronecker極限式
在函數體之算術研究中取得重大進展

One of my research topics focuses on special values of the L-functions coming from automorphic forms over function fields. In the study of automorphic L-functions, Eisenstein series emerge as “kernel functions” and play essential roles in the Langlands program. My current pursuit involves exploring the arithmetic and geometric narratives hidden within the special values of Eisenstein series in positive characteristic.

The cornerstone of my seminal work is the derivation of a function field analogue of the Kronecker limit formula for Eisenstein series across arbitrary ranks. This formula, in the context of positive characteristic, was initially formulated for the rank 2 case in my earlier work. My breakthrough lies in extending the formula to arbitrary ranks through a more conceptual methodology. This comprehensive result was published in Inventiones Mathematicae, a leading journal in the field of mathematics. The formula enhances our understanding of Eisenstein series and enables direct applications to period interpretations of special L-values. Moreover, my collaboration with Professor Papikian from Penn State University uses this general formula to examine the cuspidor divisors of the Drinfeld modular varieties in arbitrary ranks, marking another significant contribution to my work. Numerous related projects are currently underway.

傑出研究獎

得獎感言

這次能夠獲得傑出研究獎,我深感榮幸並充滿感激。首先要感謝評審委員的認可,這對我來說是莫大的鼓勵。也非常感謝國家科學及技術委員會、國立清華大學和國家理論科學研究中心的支持與資源,使我的研究得以順利進行。最重要的是,我要向我的太太表達最深的謝意,她一直以來在家庭上的照顧以及對我的陪伴、扶持與鼓勵是我不斷前進的動力。最後,我將這份榮譽與所有支持和幫助過我的人分享,並自我期許未來能夠帶來更多的學術貢獻。